ansiktsgjenkjenning
AI-treningsdata for ansiktsgjenkjenning
Optimaliser ansiktsgjenkjenningsmodellene dine for nøyaktighet med bildedata av beste kvalitet
I dag er vi ved begynnelsen av neste generasjons mekanisme, der ansiktene våre er våre passord. Gjennom gjenkjennelsen av unike ansiktstrekk kan maskiner oppdage om personen som prøver å få tilgang til en enhet er autorisert, matche CCTV-opptak med faktiske bilder for å spore forbrytere og misligholdere, redusere kriminalitet i butikker og mer. Med enkle ord, dette er teknologien som skanner en persons ansikt for å autorisere tilgang eller utføre et sett med handlinger den er designet for å utføre. På baksiden jobber tonnevis av algoritmer og moduler i rasende hastigheter for å utføre beregninger og matche ansiktstrekk (som former og polygoner) for å utføre viktige oppgaver.
Anatomien til en nøyaktig ansiktsgjenkjenningsmodell
Ansiktstrekk og perspektiv
En persons ansikt ser annerledes ut fra hver vinkel, profil og perspektiv. En maskin skal være i stand til nøyaktig å fortelle om det er samme person uavhengig av om personen stirrer på enheten uansett fra et frontnøytralt perspektiv eller rett under perspektiv.
Mange ansiktsuttrykk
En modell må nøyaktig fortelle om en person smiler, rynker, gråter eller stirrer ved å se på dem eller bildene deres. Den bør kunne forstå at øynene kan se like ut når en person enten er overrasket eller redd og deretter oppdage det nøyaktige uttrykket feilfritt.
Annoter unike ansiktsidentifikatorer
Synlige differensiatorer som føflekker, arr, brannskader og mer er differensiatorer som er unike for enkeltpersoner og bør vurderes av AI-moduler for å trene og behandle ansikter bedre. Modeller skal kunne oppdage dem og tilskrive dem som ansiktstrekk og ikke bare hoppe over dem
Ansiktsgjenkjenningstjenester fra Shaip
Enten du trenger innsamling av ansiktsbildedata (som består av forskjellige ansiktstrekk, perspektiver, uttrykk eller følelser), eller ansiktsbildedataannoteringstjenester (for merking av synlig differensiator, ansiktsuttrykk med passende metadata, f.eks. smil, rynker, osv.), våre bidragsytere fra over hele verden kan dekke dine treningsdatabehov raskt og i stor skala.
Ansiktsbildesamling
For at AI-systemet ditt skal levere nøyaktige resultater, må det trenes med tusenvis av menneskelige ansiktsdatasett. Jo mer volumet av bildedata, jo bedre. Det er grunnen til at nettverket vårt kan hjelpe deg med å hente millioner av datasett, slik at ansiktsgjenkjenningssystemet ditt er opplært med de mest passende, relevante og kontekstuelle dataene. Vi forstår også at din geografi, markedssegment og demografi kan være veldig spesifikke. For å imøtekomme alle dine behov tilbyr vi ansiktsbildedata på tvers av ulike etnisiteter, aldersgrupper, raser og mer. Vi implementerer strenge retningslinjer for hvordan ansiktsbilder skal lastes opp til systemet vårt når det gjelder oppløsninger, filformater, belysning, positurer og mer. Dette gir oss et enhetlig utvalg av datasett som ikke bare er enkelt å kompilere, men også trene opp.
Ansiktsbildekommentar
Når du skaffer deg kvalitetsansiktsbilder, har du bare fullført 50 % av oppgaven. Ansiktsgjenkjenningssystemene dine vil fortsatt gi deg meningsløse resultater (eller ingen resultater i det hele tatt) når du mater inn innhentede bildedatasett i dem. For å starte treningsprosessen må du få ansiktsbildet ditt kommentert. Det er flere datapunkter for ansiktsgjenkjenning som må merkes, bevegelser som må merkes, følelser og uttrykk som må kommenteres og mer. Hos Shaip gjør vi alt dette med presisjon gjennom våre teknikker for ansiktsgjenkjenning. Alle intrikate detaljer og aspekter ved ansiktsgjenkjenning er kommentert for nøyaktighet av våre egne interne veteraner, som har vært i AI-spekteret i årevis.
Shaip Can
Kilde ansiktsbehandling
bilder
Tren ressurser for å merke bildedata
Se gjennom data for nøyaktighet og kvalitet
Send inn datafiler i avtalt format
Vårt team av eksperter kan samle inn og kommentere ansiktsbilder på vår proprietære bildekommentarplattform, men de samme annotatorene kan etter en kort opplæring også kommentere ansiktsbilder på din interne bildekommentarplattform. I løpet av kort tid vil de kunne kommentere tusenvis av ansiktsbilder basert på strenge spesifikasjoner og med ønsket kvalitet.TE
Brukstilfeller for ansiktsgjenkjenning
Uavhengig av idé eller markedssegment, vil du trenge store mengder data som må kommenteres for å kunne trenes. Så våre løsninger vil perfekt møte dine behov og bidra til å fremskynde tiden din til markedet. For å få en rask idé om noen av brukstilfellene du kan kontakte oss, er her en liste.
- For å implementere ansiktsgjenkjenningssystemer i bærbare enheter, IOT økosystemer, og gi plass for avansert sikkerhet og kryptering.
- For geografisk overvåking og sikkerhetsformål for å overvåke høyprofilerte nabolag, sensitive regioner av diplomater og mer.
- For å inkludere nøkkelfri tilgang til bilene dine eller tilkoblede biler.
- For å kjøre målrettede annonsekampanjer for produktene eller tjenestene dine.
- For å gjøre helsevesenet mer tilgjengelig og gjøre EPJer interoperable, ved å gi tilgang gjennom ansiktstrekk under nødssituasjoner og operasjoner.
- Å tilby personlige gjestfrihetstjenester til gjester ved å huske og profilere deres interesser, liker/misliker, rom og matpreferanser osv.
Datasett for ansiktsgjenkjenning / datasett for ansiktsgjenkjenning
Ansikt landemerke datasett
12k bilder med variasjoner rundt hodeposisjon, etnisitet, kjønn, bakgrunn, fangstvinkel, alder osv. med 68 landemerkepunkter
- Bruk sak: ansiktsgjenkjenning
- Format: Bilder
- Volum: 12,000 +
- merknad: Merkemerke
Biometrisk datasett
22k ansiktsvideodatasett fra flere land med flere positurer for ansiktsgjenkjenningsmodeller
- Bruk sak: ansiktsgjenkjenning
- Format: video
- Volum: 22,000 +
- merknad: Nei
Bildedatasett for gruppe mennesker
2.5k+ bilder fra 3,000+ personer. Datasettet inneholder bilder av en gruppe på 2-6 personer fra flere geografier
- Bruk sak: Bildegjenkjenningsmodell
- Format: Bilder
- Volum: 2,500 +
- merknad: Nei
Biometrisk maskerte videodatasett
20 XNUMX videoer av ansikter med masker for bygging/trening av Spoof Detection AI-modell
- Bruk sak: Spoof Detection AI-modell
- Format: video
- Volum: 20,000 +
- merknad: Nei
vertikaler
Tilbyr ansiktsgjenkjenningstjenester til flere bransjer
Ansiktsgjenkjenning er det nåværende raseriet på tvers av segmenter, der unike brukstilfeller blir testet og rullet ut for implementeringer. Fra å spore barnesmuglere og distribuere bio-ID i organisasjonslokaler til å studere uregelmessigheter som kan forbli uoppdaget for det normale øyet, ansiktsgjenkjenning hjelper bedrifter og bransjer på en myriade av måter.
Biler
Helsevesen
Detaljhandel
Hospitality
Markedsføring av e-handel
Sikkerhet og forsvar
Vår evne
Ansatte
Dedikerte og trente team:
- 30,000 XNUMX+ samarbeidspartnere for datainnsamling, merking og kvalitetssikring
- Godkjent prosjektlederteam
- Erfarent produktutviklingsteam
- Talentpool-innkjøps- og onboarding-team
Prosess
Høyeste prosesseffektivitet er sikret med:
- Robust 6 Sigma Stage-Gate-prosess
- Et dedikert team av 6 Sigma svarte belter – nøkkelprosesseiere og overholdelse av kvalitet
- Kontinuerlig forbedring og tilbakemeldingssløyfe
Plattform
Den patenterte plattformen tilbyr fordeler:
- Nettbasert ende-til-ende-plattform
- Upåklagelig kvalitet
- Raskere TAT
- Sømløs levering
Ansatte
Dedikerte og trente team:
- 30,000+ samarbeidspartnere for dataskaping, merking og kvalitetssikring
- Godkjent prosjektlederteam
- Erfarent produktutviklingsteam
- Talentpool-innkjøps- og onboarding-team
Prosess
Høyeste prosesseffektivitet er sikret med:
- Robust 6 Sigma Stage-Gate-prosess
- Et dedikert team av 6 Sigma svarte belter – nøkkelprosesseiere og overholdelse av kvalitet
- Kontinuerlig forbedring og tilbakemeldingssløyfe
Plattform
Den patenterte plattformen tilbyr fordeler:
- Nettbasert ende-til-ende-plattform
- Upåklagelig kvalitet
- Raskere TAT
- Sømløs levering
Anbefalte ressurser
Kjøperhåndbok
Bildemerking og merking for datasyn
Datasyn handler om å forstå den visuelle verdenen for å trene datasynsapplikasjoner. Suksessen koker fullstendig ned til det vi kaller bildekommentarer – den grunnleggende prosessen bak teknologien som får maskiner til å ta intelligente avgjørelser, og det er akkurat dette vi er i ferd med å diskutere og utforske.
Blogg
Hvordan datainnsamling spiller en avgjørende rolle i utviklingen av ansiktsgjenkjenningsmodeller
Mennesker er flinke til å gjenkjenne ansikter, men vi tolker også uttrykk og følelser ganske naturlig. Forskning sier at vi kan identifisere personlig kjente ansikter innen 380 ms etter presentasjon og 460 ms for ukjente fjes. Imidlertid har denne iboende menneskelige egenskapen nå en konkurrent innen kunstig intelligens og datasyn.
Blogg
Hva er AI-bildegjenkjenning og hvordan fungerer det?
Mennesker har den medfødte evnen til å skille og nøyaktig identifisere objekter, mennesker og steder fra fotografier. Imidlertid har datamaskiner ikke muligheten til å klassifisere bilder. Likevel kan de trenes til å tolke visuell informasjon ved hjelp av datasynsapplikasjoner og bildegjenkjenningsteknologi.
Utvalgte klienter
Gir teamene mulighet til å bygge verdensledende AI-produkter.
La oss diskutere dine treningsdatabehov for ansiktsgjenkjenningsmodeller
Ofte stilte spørsmål (FAQ)
Ansiktsgjenkjenning er en av de integrerte komponentene i intelligent biometrisk sikkerhet, rettet mot å bekrefte eller autentisere en persons identitet. Som en teknologi brukes den til å fastslå, identifisere og kategorisere mennesker i videoer, bilder og til og med sanntidsfeeder.
Ansiktsgjenkjenning fungerer ved å matche de fangede ansiktene til individer mot en relevant database. Prosessen starter med deteksjon, etterfølges av en 2D- og 3D-analyse, bilde-til-data-konvertering og til slutt matchmaking.
Ansiktsgjenkjenning, som en oppfinnsom visuell identifiseringsteknologi, er ofte det primære grunnlaget for å låse opp smarttelefoner og datamaskiner. Men dets tilstedeværelse i rettshåndhevelse, dvs. å hjelpe tjenestemenn med å samle krusbilder av de mistenkte og matche dem mot databaser, kvalifiserer også som et eksempel.
Hvis du planlegger å trene en vertikalspesifikk AI-modell med datasyn, må du først gjøre den i stand til å identifisere bilder og ansikter til enkeltpersoner og deretter starte overvåket læring ved å mate inn nyere teknikker som semantikk, segmentering og polygonmerking. Ansiktsgjenkjenning er derfor et springbrett for å trene opp sikkerhetsspesifikke AI-modeller, der individuell identifikasjon prioriteres fremfor gjenstandsdeteksjon.
Ansiktsgjenkjenning kan være ryggraden i flere intelligente systemer i post-pandemien. Fordelene inkluderer forbedret detaljhandelsopplevelse ved bruk av Face Pay-teknologi, bedre bankopplevelse, reduserte kriminalitetsrater i detaljhandelen, raskere identifisering av savnede personer, forbedret pasientbehandling, nøyaktig oppmøtesporing og mer.