Dataanmerkning for Healthcare AI

Menneskedrevet medisinsk dataanmerkning

Lås opp kompleks informasjon i ustrukturerte data med enhetsutvinning og gjenkjenning

Medisinsk datamerknad

Utvalgte klienter

Gir teamene mulighet til å bygge verdensledende AI-produkter.

Amazon
Google
Microsoft
Cogknit
Det er en økende etterspørsel etter å analysere ustrukturerte, komplekse medisinske data for å avdekke uoppdaget innsikt. Medisinske dataanmerkninger kommer til unnsetning

80 % av dataene i helsedomenet er ustrukturerte, noe som gjør dem utilgjengelige. Å få tilgang til dataene krever betydelig manuell intervensjon, noe som begrenser mengden brukbare data. Å forstå tekst i det medisinske domenet krever en dyp forståelse av terminologien for å frigjøre potensialet. Shaip gir deg ekspertisen til å kommentere helsedata for å forbedre AI-motorer i stor skala.

IDC, analytikerfirma:

Den verdensomspennende installerte basen av lagringskapasitet vil nå 11.7 zettabyte in 2023

IBM, Gartner og IDC:

Driftet i over to tiår; 80% av dataene rundt om i verden er ustrukturert, noe som gjør det foreldet og ubrukelig. 

Real-World Solution

Analyser data for å oppdage meningsfull innsikt for å trene NLP-modeller med Medical Text Data Annotation

Vi tilbyr merknadstjenester for medisinske data som hjelper organisasjoner med å trekke ut kritisk informasjon i ustrukturerte medisinske data, f.eks. legenotater, EPJ-innleggelses-/utskrivningsoppsummeringer, patologirapporter osv., som hjelper maskiner med å identifisere de kliniske enhetene som er til stede i en gitt tekst eller et gitt bilde. Våre legitimerte domeneeksperter kan hjelpe deg med å levere domenespesifikk innsikt – dvs. symptomer, sykdom, allergier og medisiner, for å hjelpe deg med å få innsikt for omsorg.

Vi tilbyr også proprietære Medical NER API-er (pre-trent NLP-modeller), som kan automatisk identifisere og klassifisere de navngitte enhetene presentert i et tekstdokument. Medisinske NER APIer utnytter proprietær kunnskapsgraf, med 20 millioner+ relasjoner og 1.7 millioner+ kliniske konsepter

Real-World Solution

Fra datalisensiering og innsamling, til datakommentarer, har Shaip deg dekket.

  • Merknader og utarbeidelse av medisinske bilder, videoer og tekster, inkludert radiografi, ultralyd, mammografi, CT-skanninger, MR-er og fotonemisjonstomografi
  • Farmasøytiske og andre helsetjenester for bruk av naturlig språkbehandling (NLP), inkludert medisinsk tekstkategorisering, navngitt enhetsidentifikasjon, tekstanalyse, etc.

Medisinsk merknadsprosess

Merknadsprosessen er generelt forskjellig fra kundens krav, men den innebærer hovedsakelig:

Domenekompetanse

Fase 1: Teknisk domeneekspertise (forstå prosjektomfang og retningslinjer for kommentarer)

Treningsressurser

Fase 2: Opplæring av passende ressurser for prosjektet

Qa-dokumenter

Fase 3: Tilbakemeldingssyklus og kvalitetssikring av de kommenterte dokumentene

Vår ekspertise

1. Klinisk enhetsgjenkjenning/kommentar

En stor mengde medisinske data og kunnskap er tilgjengelig i journalene hovedsakelig i et ustrukturert format. Medisinsk enhetsannotering gjør det mulig for oss å konvertere ustrukturerte data til et strukturert format.

Annotering av klinisk enhet
Medisinegenskaper

2. Attribusjonsannotering

2.1 Medisinegenskaper

Medisiner og deres egenskaper er dokumentert i nesten hver journal, som er en viktig del av det kliniske domenet. Vi kan identifisere og kommentere de ulike egenskapene til medisiner i henhold til retningslinjer.

2.2 Lab Dataattributter

Labdata er for det meste ledsaget av deres attributter i en medisinsk journal. Vi kan identifisere og kommentere de ulike egenskapene til laboratoriedata i henhold til retningslinjer.

Lab Dataattributter
Kroppsmålingsattributter

2.3 Kroppsmålingsattributter

Kroppsmåling er for det meste ledsaget av deres attributter i en medisinsk journal. Det består for det meste av vitale tegn. Vi kan identifisere og kommentere de ulike egenskapene til kroppsmåling.

3. Relasjonsanmerkning

Etter å ha identifisert og kommentert kliniske enheter, tildeler vi også relevante forhold mellom enhetene. Relasjoner kan eksistere mellom to eller flere konsepter.

Forholdsanmerkning
Bivirkningskommentar

4. Bivirkningskommentar

Sammen med å identifisere og kommentere viktige kliniske enheter og relasjoner, kan vi også kommentere de negative effektene av visse medikamenter eller prosedyrer. Omfanget er som følger: Merking av uønskede effekter og deres utløsende stoffer. Tilordne forholdet mellom den negative effekten og årsaken til effekten.

5. PHI Avidentifikasjon

Våre PHI/PII-avidentifikasjonsmuligheter inkluderer fjerning av sensitiv informasjon som navn og personnummer som direkte eller indirekte kan koble en person til deres personlige data. Det er det pasienter fortjener og HIPAA krever.

Avidentifiser fritekstdokumenter
Emr

6. Elektroniske medisinske journaler (EMR)

Leger får betydelig innsikt fra elektroniske medisinske journaler (EMR) og kliniske legerapporter. Ekspertene våre kan trekke ut kompleks medisinsk tekst som kan brukes i sykdomsregistre, kliniske studier og helserevisjoner.

7. Status/Negering/Emne

Sammen med å identifisere kliniske enheter og relasjoner, kan vi også tildele status, negasjon og emne for de kliniske enhetene.

Status-Negasjon-Emne

Grunner til å velge Shaip som din pålitelige medisinske kommentarpartner

porsjoner

porsjoner

Dedikerte og trente team:

  • 30,000+ samarbeidspartnere for dataskaping, merking og kvalitetssikring
  • Godkjent prosjektlederteam
  • Erfarent produktutviklingsteam
  • Talentpool-innkjøps- og onboarding-team
Prosess

Prosess

Høyeste prosesseffektivitet er sikret med:

  • Robust 6 Sigma Stage-Gate-prosess
  • Et dedikert team av 6 Sigma svarte belter – nøkkelprosesseiere og overholdelse av kvalitet
  • Kontinuerlig forbedring og tilbakemeldingssløyfe
Plattform

Plattform

Den patenterte plattformen tilbyr fordeler:

  • Nettbasert ende-til-ende-plattform
  • Upåklagelig kvalitet
  • Raskere TAT
  • Sømløs levering

Hvorfor Shaip?

Dediker Team

Det er anslått at dataforskere bruker over 80 % av tiden sin på dataforberedelse. Med outsourcing kan teamet ditt fokusere på utviklingen av robuste algoritmer, og overlate den kjedelige delen av å samle de navngitte enhetsgjenkjenningsdatasettene til oss.

Skalerbarhet

En gjennomsnittlig ML-modell vil kreve innsamling og merking av store deler av navngitte datasett, noe som krever at selskaper trekker inn ressurser fra andre team. Med partnere som oss tilbyr vi domeneeksperter som enkelt kan skaleres etter hvert som virksomheten din vokser.

Bedre kvalitet

Dedikerte domeneeksperter, som kommenterer dag inn og dag ut, vil – hver dag – gjøre en overlegen jobb sammenlignet med et team, som trenger å imøtekomme annoteringsoppgaver i deres travle timeplaner. Det er unødvendig å si at det gir bedre resultater.

Operasjonell Excellence

Vår utprøvde prosess for datakvalitetssikring, teknologivalideringer og flere stadier av QA, hjelper oss med å levere klassens beste kvalitet som ofte overgår forventningene.

Sikkerhet med personvern

Vi er sertifisert for å opprettholde de høyeste standardene for datasikkerhet med personvern mens vi jobber med våre kunder for å sikre konfidensialitet

konkurranse~~POS=TRUNC priser

Som eksperter på kuratering, opplæring og ledelse av team av dyktige arbeidere, kan vi sikre at prosjekter leveres innenfor budsjett.

Shaip Kontakt oss

Ser du etter annoteringseksperter i helsevesenet for komplekse prosjekter?

Kontakt oss nå for å finne ut hvordan vi kan samle inn og kommentere datasett for din unike AI/ML-løsning

  • Ved å registrere meg godtar jeg Shaip Personvernserklæring og Våre vilkår og gi mitt samtykke til å motta B2B-markedsføringskommunikasjon fra Shaip.

Named Entity Recognition er en del av Natural Language Processing. Hovedmålet med NER er å behandle strukturerte og ustrukturerte data og klassifisere disse navngitte enhetene i forhåndsdefinerte kategorier. Noen vanlige kategorier inkluderer navn, sted, selskap, tid, pengeverdier, hendelser og mer.

I et nøtteskall omhandler NER:

Navngitt enhetsgjenkjenning/deteksjon – Identifisere et ord eller en rekke ord i et dokument.

Navngitt enhetsklassifisering – Klassifisering av alle oppdagede enheter i forhåndsdefinerte kategorier.

Natural Language-behandling bidrar til å utvikle intelligente maskiner som er i stand til å trekke ut mening fra tale og tekst. Machine Learning hjelper disse intelligente systemene å fortsette å lære ved å trene på store mengder naturlige språkdatasett. Generelt består NLP av tre hovedkategorier:

Forstå strukturen og regler for språket – Syntaks

Utlede betydningen av ord, tekst og tale og identifisere deres relasjoner – semantikk

Identifisere og gjenkjenne talte ord og transformere dem til tekst – tale

Noen av de vanlige eksemplene på en forhåndsbestemt enhetskategorisering er:

person: Michael Jackson, Oprah Winfrey, Barack Obama, Susan Sarandon

Sted: Canada, Honolulu, Bangkok, Brasil, Cambridge

Organisasjon: Samsung, Disney, Yale University, Google

Tid: 15.35, 12,

De forskjellige tilnærmingene til å lage NER-systemer er:

Ordbokbaserte systemer

Regelbaserte systemer

Maskinlæringsbaserte systemer

Strømlinjeformet kundestøtte

Effektive menneskelige ressurser

Forenklet innholdsklassifisering

Optimalisering av søkemotorer

Nøyaktig innholdsanbefaling